日本における外国人労働者の受入とその雇 用形態に関する一考察

南山大学 太田代ゼミ

目次

- 1. 研究動機
- 2. データ
- 3. 理論
- 4. 回帰分析
- 5. 考察
- 6. 参考文献

1. 研究動機

日本の現状

日本政府の活動

少子高齢化による労働力不足

国内における人口増加ではなく外国人の受入

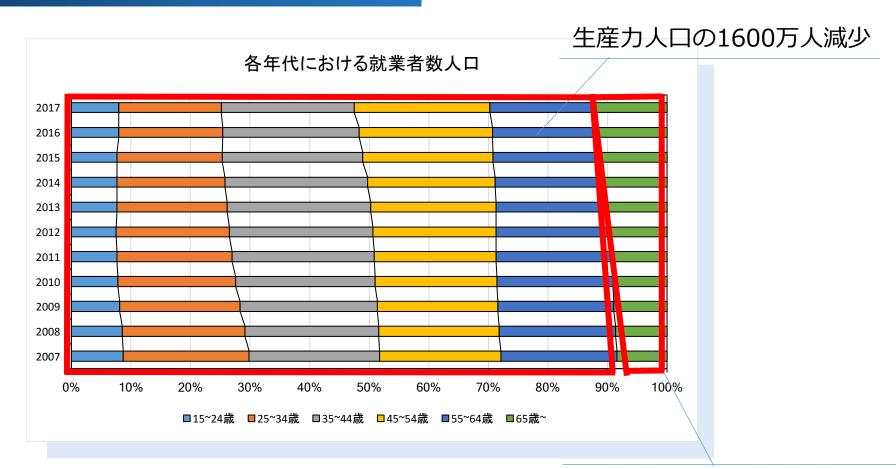
最近の日本政府の動向

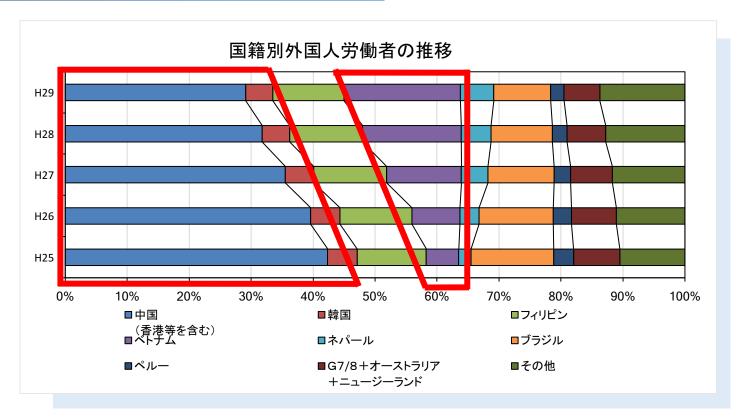
新在留資格創設をめぐる入国管理法改正案

- a. 新在留資格 「特定技能」 特定技能1号 特定技能2号
- b. 単純労働者の受入 来春から人材確保が困難な分野に限る

入管法改正案を議論する自民党法務部会(25日、党本部)

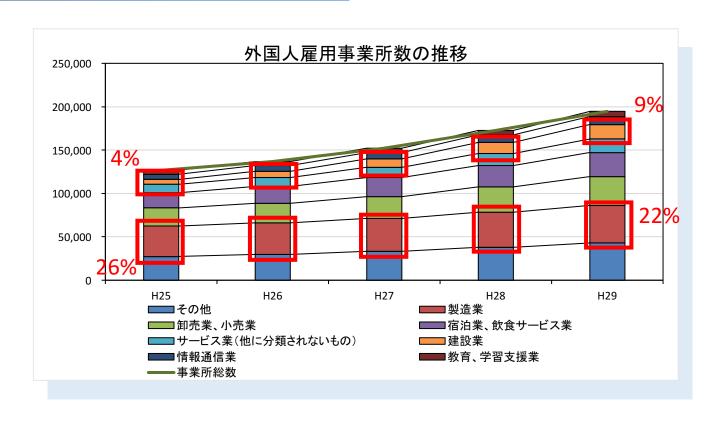
目的


重回帰分析によって労働移動の 決定要因を特定する


自分たちなりのより良い移民 政策を提示する

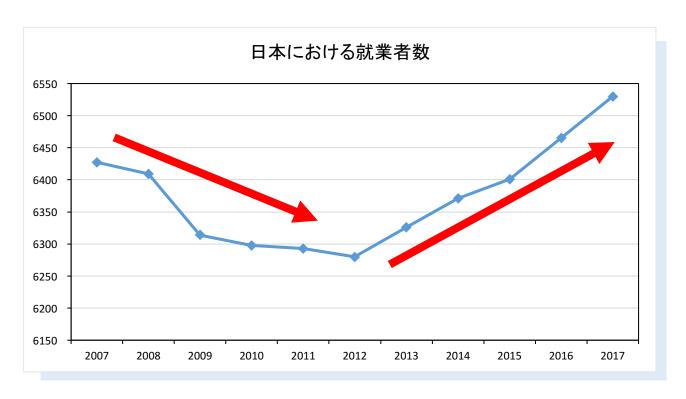
2. データ

高齢者人口の268万人の増加


国籍別外国人労働者の推移

技能実習制度

発展途上国の人々に日本の技術を習得し自国へ持ち帰って もらう制度


外国人雇用事業所の推移

製造業: 4 ポイント ↓ 建設業: 5 ポイント ↑

背景: 東京五輪開催に伴う, 短期的な建設業の需要拡大

日本における就業者の推移

高齢労働者と外国人労働者増加の影響

短期的視点: 労働者数は増加傾向

長期的視点: 労働者数は減少傾向

3. 理論 (マクドゥガル・モデル)

仮定

完全競争市場

一財 (Q)

2生産要素 (労働 (L), 資本 (K))

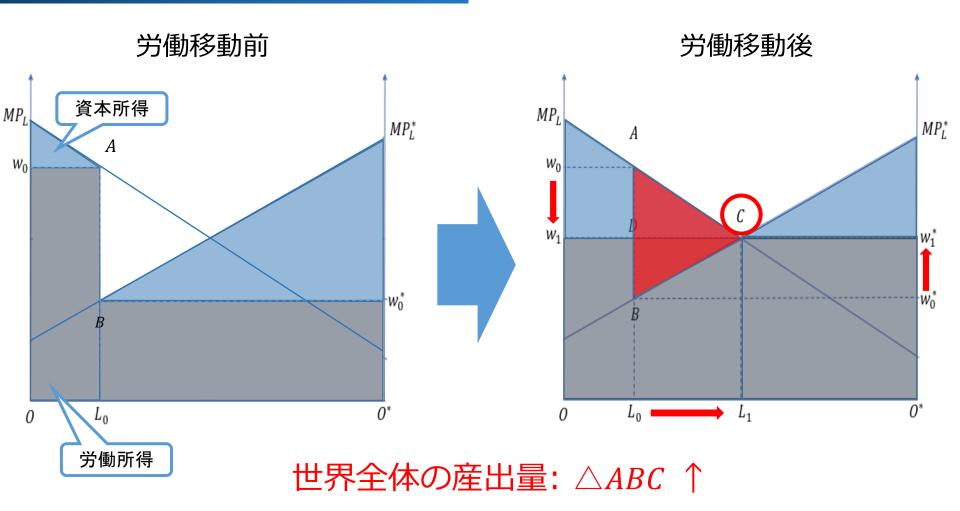
2国 (自国(H), 外国(F))

当該財の価格は1であり、それはニュメレール財(価値基準財)である。

理論 (マクドゥガル・モデル)

モデル

ある企業の生産量を $Q_i = F_i(K_i, L_i)$, 利潤を $\pi_i = F_i(K_i, L_i) - (rK_i + wL_i)$ とする。


ここで, 自国(外国)の資本レンタル率を $r(r^*)$, 賃金率を $w(w^*)$ とする。(i = H, F)

一階の条件:

$$\frac{\partial \pi}{\partial K} = \frac{\partial F}{\partial K} - r = 0$$
$$\frac{\partial \pi}{\partial L} = \frac{\partial F}{\partial L} - w = 0$$

$$MP_K = r$$
, $MP_L = w$

理論 (マクドゥガル・モデル)

理論 (グラビティ・モデル)

人口移動の理論

Ravensteinによる人口移動の法則

- 1: 人口は機会の少ないところから機会の多いところへ移動する。
- 2: 地域間移動は距離から制約を受け, 近距離の移動が多いところへ移動する。
- 3: 地域間人口移動は双方向の流れを形成する。
- 4: 都市住民の移動傾向は農村住民のそれより低いが,交通・通信手段の発達と交易・産業の成長に伴い,人口移動が加速する。

理論 (グラビティ・モデル)

モデル

$$M_{ij} = k \frac{L_i L_j}{D_{ij}}$$

 M_{ij} : 移民, k: 定数, L_i, L_j : 経済規模, D_{ij} : 二点間の距離 (ただし, i,jは任意の場所)

対数化モデル: $lnM_{ij} = \alpha + \beta_1 lnL_i + \beta_2 lnL_j + \beta_3 lnD_{ij} + \varepsilon_{ij}$

経済規模に比例し, 距離に反比例する

理論 (移民意思決定モデル)

仮定

時間軸: t = i (i = 0.1.2 ... n)

2国 (自国(H), 外国(F))

年間収入: $W_H(t)$, $W_F(t)$

総コスト: *C*

市場利子率: r

割引率: $\delta = 1 + \frac{1}{r}$

理論 (移民意思決定モデル)

モデル(小崎2015)

自国と外国で得られる年間収入の現在価値は

$$NPV_H = \sum_{t=1}^n \delta^t W_H(t) \qquad (1)$$

$$NPV_F = \sum_{t=1}^{n} \delta^t W_F(t) \qquad (2)$$

ここで(1), (2)式を比較すると

$$\sum_{t=1}^{n} \delta^{t} (W_{F}(t) - W_{H}(t)) > C$$

よって, Cの値が低いほど, tの値が低いほど移動率は高くなり, 両国の所得格差が大きいほど同様に高くなる。

4. 回帰分析の結果 (マクドゥガル・モデル)

推定式

 $Immigration_{ij} = \alpha + \beta_1 GDP_{ij} + \beta_2 Wage_{ij} + \beta_3 College_{ij} + u_{ij}$

項目

i: 2000, 2005, 2010, 2015 (年)	
j: 47 (都道府県)	
Immigration: 外国人労働者 (対数値)	出所:厚生労働省「外国人雇用状況の届出状況」
GDP: 実質GDP (百万円) (対数値)	出所:内閣府HP「県民経済計算」
Wage: 実質最低賃金 (円) (対数値)	出所:厚生労働省「地域別最低賃金の全国一覧」
College:大学数(人口10万人あたり) (対数値)	出所:文部科学省「学校基本調査」
u _{ij} : 残差	
α: 切片	

結果

自由度修正済み決定係数	0.879490383											
	係数	標準誤差	t	P-值	下限 95%	上限 95%	下限 90.0%	上限 90.0%				
切片	-70.77569153	3.167883222	-22.34163528	2.65501E-54	-77.02573677	-64.52564629	-76.01276349	-65.53861958				
県内実質GDP	0.852948243	0.05362287	15.90642645	2.10652E-36	0.747153508	0.958742978	0.764300142	0.941596344				
実質最低賃金	9.757089143	0.535544652	18.21900212	4.65755E-43	8.700491388	10.8136869	8.871738996	10.64243929				
大学数(人口10万人あたり)	0.293973072	0.102777254	2.860293103	0.004721948	0.09119966	0.496746484	0.12406407	0.463882074				

- ・自由度修正済み決定係数は被説明変数が説明変数によって87.94%説明されていることを示している。 パネルデータ分析だと良い結果だといえる。
- ・全てのt値が絶対値の2以上になっている。これは統計的に有意と言える。
- ・全ての説明変数は有意水準1%を満たし、被説明変数と強い相関関係があるといえる。

係数

自由度修正済み決定係数	0.879490383											
	係数	標準誤差	t	P-值	下限 95%	上限 95%	下限 90.0%	上限 90.0%				
切片	-70.77569153	3.167883222	-22.34163528	2.65501E-54	-77.02573677	-64.52564629	-76.01276349	-65.53861958				
県内実質GDP	0.852948243	0.05362287	15.90642645	2.10652E-36	0.747153508	0.958742978	0.764300142	0.941596344				
実質最低賃金	9.757089143	0.535544652	18.21900212	4.65755E-43	8.700491388	10.8136869	8.871738996	10.64243929				
大学数(人口10万人あたり)	0.293973072	0.102777254	2.860293103	0.004721948	0.09119966	0.496746484	0.12406407	0.463882074				

県内実質GDP

係数: 0.85 > 0

 $\mathsf{GDP} \, \! \uparrow \!$

労働需要↑

実質最低賃金

係数: 9.75 > 0

最低賃金↑

国際間の労働移動↑

自由度修正済み決定係数	0.879490383											
	係数	標準誤差	t	P-值	下限 95%	上限 95%	下限 90.0%	上限 90.0%				
切片	-70.77569153	3.167883222	-22.34163528	2.65501E-54	-77.02573677	-64.52564629	-76.01276349	-65.53861958				
県内実質GDP	0.852948243	0.05362287	15.90642645	2.10652E-36	0.747153508	0.958742978	0.764300142	0.941596344				
実質最低賃金	9.757089143	0.535544652	18.21900212	4.65755E-43	8.700491388	10.8136869	8.871738996	10.64243929				
大学数(人口10万人あたり)	0.293973072	0.102777254	2.860293103	0.004721948	0.09119966	0.496746484	0.12406407	0.463882074				

大学数(人口10万人あたり)

係数: 0.29 > 0

大学数 ↑ 📄 労働移動 ↑

大学の多い地域には, 高度な人材が多いため, 相対的に賃金も高いと考えられる。 そして,賃金の高いところには労働者もひきつけられる。

4. 回帰分析の結果(グラビティモデル)

推定式

 $Immigration_{ij} = \alpha + \beta_1 GDP_{ij} + \beta_2 Openactive_{ij} + \beta_3 Distance_{ij} + u_{ij}$

項目

i: 2000, 2005, 2010, 2015 (年)	
j: 47 (都道府県)	
Immigration: 外国人労働者 (対数値)	データ元: 厚生労働省「外国人雇用状況の届出状 況」
GDP: 実質GDP (百万円) (対数値)	データ元: 内閣府「県民経済計算」
Openactive: 有効求人倍率 (%)	データ元: 総務省統計局
Foreign: 都道府県庁間距離 (km) (対数値)	データ元: 国土交通省 国土地理院
u _{ij} : 残差	
α: 切片	

結果

自由度修正済み決定係数	0.667775152											
	係数	標準誤差	t	P-值	下限 95%	上限 95%	下限 90.0%	上限 90.0%				
切片	-14.47847802	1.757849393	-8.236472402	3.2173E-14	-17.94661035	-11.01034568	-17.38451436	-11.57244168				
県内実質GDP	1.28984864	0.09550849	13.50506791	2.5053E-29	1.101416069	1.478281212	1.131956193	1.447741087				
有効求人倍率	0.856262444	0.205800538	4.160642401	4.86554E-05	0.450230219	1.262294669	0.51603771	1.196487178				
都道府県庁間距離	-0.081522485	0.06397951	-1.274196772	0.204200664	-0.207750253	0.044705284	-0.187291944	0.024246975				

- ・自由度修正済み決定係数は被説明変数が説明変数によって66.77%説明されていることを示している。 パネルデータ分析だと概ね良い結果だといえる。
- ・全てのt値が都道府県庁間距離を除いて絶対値の2以上になっている。
- ・全ての説明変数は有意水準1%を満たし、被説明変数と強い相関関係があるといえる。

係数

自由度修正済み決定係数	0.667775152											
	係数	標準誤差	t	P-値	下限 95%	上限 95%	下限 90.0%	上限 90.0%				
切片	-14.47847802	1.757849393	-8.236472402	3.2173E-14	-17.94661035	-11.01034568	-17.38451436	-11.57244168				
県内実質GDP	1.28984864	0.09550849	13.50506791	2.5053E-29	1.101416069	1.478281212	1.131956193	1.447741087				
有効求人倍率	0.856262444	0.205800538	4.160642401	4.86554E-05	0.450230219	1.262294669	0.51603771	1.196487178				
都道府県庁間距離	-0.081522485	0.06397951	-1.274196772	0.204200664	-0.207750253	0.044705284	-0.187291944	0.024246975				

県内実質GDP

係数: 1.29 > 0

市場規模↑

労働移動 ↑

有効求人倍率

係数: 0.86 > 0

有効求人倍率↑

労働需要↑

係数

自由度修正済み決定係数	0.667775152											
	係数	標準誤差	t	P-値	下限 95%	上限 95%	下限 90.0%	上限 90.0%				
切片	-14.47847802	1.757849393	-8.236472402	3.2173E-14	-17.94661035	-11.01034568	-17.38451436	-11.57244168				
県内実質GDP	1.28984864	0.09550849	13.50506791	2.5053E-29	1.101416069	1.478281212	1.131956193	1.447741087				
有効求人倍率	0.856262444	0.205800538	4.160642401	4.86554E-05	0.450230219	1.262294669	0.51603771	1.196487178				
都道府県庁間距離	-0.081522485	0.06397951	-1.274196772	0.204200664	-0.207750253	0.044705284	-0.187291944	0.024246975				

都道府県庁間距離

係数: -0.08 < 0

地域間距離 ↑

労働移動 ↓

国内距離の影響力は少ない

- 1. 国土の狭さ, 国内の十分な交通整理
- 2. 国内ではなく, 国際間の距離

2018/11/30

4. 回帰分析の結果 (移民意思決定モデル)

推定式

 $Immigration_{ij} = \alpha + \beta_1 Age_{ij} + \beta_2 Spending_{ij} + \beta_3 Disbursement_{ij} + \beta_4 Income_{ij} + u_{ij}$

項目

i: 2000, 2005, 2010, 2015 (年)	
j: 47 (都道府県)	
Immigration: 外国人労働者 (対数値)	出所:厚生労働省「外国人雇用状況の届出状況」
Age: 在留外国人平均年齡 (対数値)	出所: 法務省「在留外国人統計」
Spending: 総世帯消費支出 (円) (対数値)	出所: 総務省 統計局「家計調査」
Disbursement: 都道府県支出金 (千円) (対数値)	出所:文部科学省「地方教育費調査」
Income: 県民一人当たり所得 (円) (対数値)	出所: 内閣府「国民経済計算」
u_{ij} : 残差	
α: 切片	

結果

自由度修正済み決定係数	0.723003874							
	係数	標準誤差	t	P-值	下限 95%	上限 95%	下限 90.0%	上限 90.0%
切片	-35.22299122	8.017040875	-4.393515235	1.88545E-05	-51.04070839	-19.40527405	-48.47694601	-21.96903643
平均年齢	2.977913106	0.541056757	5.503883041	1.24085E-07	1.910401679	4.045424534	2.083425739	3.872400474
消費支出	-1.811363113	0.635512425	-2.850240281	0.004869966	-3.0652367	-0.557489526	-2.862006746	-0.76071948
都道府県支出金	1.32852269	0.109651936	12.11581612	3.45297E-25	1.112178115	1.544867266	1.14724361	1.509801771
県民一人当たり所得	3.59119706	0.481089126	7.464722994	3.27912E-12	2.642002482	4.540391637	2.795849546	4.386544573

- ・自由度修正済み決定係数は被説明変数が説明変数によって74.54%説明されていることを示している。 パネルデータ分析だと概ね良い結果だといえる。
- ・全てのt値が絶対値の2以上になっていて,統計学的に有意と言える。
- ・全ての説明変数は有意水準1%を満たし、被説明変数と強い相関関係があるといえる。

2018/11/30

係数

自由度修正済み決定係数	0.723003874							
	係数	標準誤差	t	P-值	下限 95%	上限 95%	下限 90.0%	上限 90.0%
切片	-35.22299122	8.017040875	-4.393515235	1.88545E-05	-51.04070839	-19.40527405	-48.47694601	-21.96903643
平均年齢	2.977913106	0.541056757	5.503883041	1.24085E-07	1.910401679	4.045424534	2.083425739	3.87240047
消費支出	-1.811363113	0.635512425	-2.850240281	0.004869966	-3.0652367	-0.557489526	-2.862006746	-0.7607194
都道府県支出金	1.32852269	0.109651936	12.11581612	3.45297E-25	1.112178115	1.544867266	1.14724361	1.509801771
県民一人当たり所得	3.59119706	0.481089126	7.464722994	3.27912E-12	2.642002482	4.540391637	2.795849546	4.386544573

平均年齡

係数: 2.98 > 0

年齢↑ 📄 労働移動 ↑ 推定符号と違い,労働移動にはある程度年齢を重ねる必要がる

消費支出

係数: -1.81 < 0

消費↑ 📄 労働移動 ↓

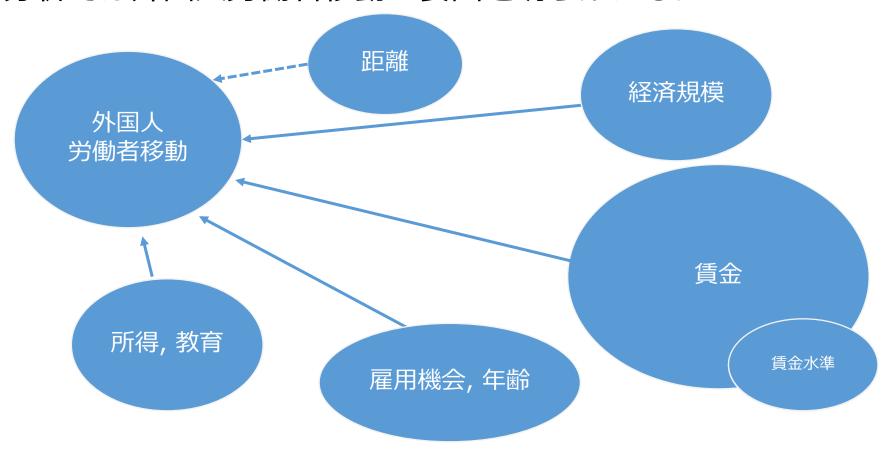
係数

自由度修正済み決定係数	0.723003874							
	係数	標準誤差	t	P-值	下限 95%	上限 95%	下限 90.0%	上限 90.0%
切片	-35.22299122	8.017040875	-4.393515235	1.88545E-05	-51.04070839	-19.40527405	-48.47694601	-21.96903643
平均年齡	2.977913106	0.541056757	5.503883041	1.24085E-07	1.910401679	4.045424534	2.083425739	3.872400474
消費支出	-1.811363113	0.635512425	-2.850240281	0.004869966	-3.0652367	-0.557489526	-2.862006746	-0.76071948
都道府県支出金	1.32852269	0.109651936	12.11581612	3.45297E-25	1.112178115	1.544867266	1.14724361	1.50980177
県民一人当たり所得	3.59119706	0.481089126	7.464722994	3.27912E-12	2.642002482	4.540391637	2.795849546	4.386544578

都道府県支出金

係数: 1.38 > 0

教育費↑ 対働移動 ↑


県民一人当たり所得

係数: 3.59 > 0

听得↑ 📄 労働移動↑

5. 考察

分析では外国人労働者移動の要因を明らかにした

現状

外国人向け新雇用政策

未熟練労働者を定住者として受け入れる制度

最近の日本政府の動向

新在留資格創設をめぐる入国管理法改正案

- a. 新在留資格 「特定技能」 特定技能1号 特定技能2号
- b. 単純労働者の受入 来春から人材確保が困難な分野に限る

1 管注改正安を議論する自民管注政部会 (25日 管:

課題

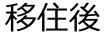
未熟練労働者の賃金 = 日本国内の最低賃金

不安定な雇用状況

解決策の提案

外国人労働者の賃金上昇

国内労働者の賃金上昇



解決策の提案

外国人労働者の質

- 1. 適切な採択基準の設定
- 2. 在留資格を与える

- 1. 外国人の定住を日本人が受け入れること
- 2. 共存できる社会制度を整える

今後の課題

より精度の高い推定式の設定

- 1. 三つの推定式からより影響力の高い変数を採択
- 2. 代理変数の働きを持つ変数等のデータの改善

より具体的な政策案の提示

より精度の高い推定式から労働移動の要因を明示し,国・地方公共団体の水準まで,具体的な政策の提示を試みる

参考文献

青木俊明、稲村肇 人口移動研究の展開と今後の展望 https://www.jstage.jst.go.jp/article/journalip1984/14/0/14_0_213/_pdf

大川昌幸著 新世社「コアテキスト 国際経済学」

警視庁 「警察白書」https://www.npa.go.jp/publications/whitepaper/

厚生労働省「外国人雇用状況」の届出状況まとめhttps://www.mhlw.go.jp/stf/houdou/0000192073.html

産経ニュース 2018年9月19日 https://www.sankei.com/premium/news/180917/prm1809170001-n3.html

総務省統計局 労働力調査 長時系列データ https://www.stat.go.jp/data/roudou/longtime/03roudou.html

日本経済新聞 2018年10月29日 https://www.nikkei.com/article/DGXMZO3700835026102018PP8000/

文部科学省 http://www.mext.go.jp/b_menu/toukei/main_b8.htm

e-stat https://www.e-stat.go.jp/

ご清聴ありがとうございました!!